IXL Ad

Display Title

Math Example--Measures of Central Tendency--Median: Example 23

Math Example--Measures of Central Tendency--Median: Example 23

Median Example 23

Topic

Measures of Central Tendency

Description

This example illustrates the process of finding the median for the set of numbers: 34, 29, 31, 49, 49, 14, 24, 13, 8, 6, 17, 23, 40, 10, 17. The solution involves arranging the numbers from least to greatest and then identifying the middle value. With an odd number of terms, the median is simply the middle number after sorting, which is 23.

Understanding the median is crucial in statistics as it provides a measure of central tendency that is not influenced by extreme values. This collection of examples helps teach the concept by presenting various scenarios, allowing students to practice the step-by-step process of finding the median for different datasets, including those with odd numbers of values and repeated numbers.

Multiple worked-out examples are vital for students to fully comprehend the concept of median. By encountering diverse datasets, including those with even and odd numbers of values, repeated values, or widely spread numbers, students can reinforce their understanding of the procedure and develop the ability to apply it in various situations. This approach helps students recognize patterns and nuances in median calculation, enhancing their overall statistical literacy.

Teacher Script: "Now, let's examine this set of numbers. Notice that we have an odd number of values, and some numbers are repeated. Remember, our first step is always to arrange the numbers from least to greatest. Once we've done that, finding the median is straightforward with an odd number of terms - it's simply the middle number in our ordered list. This example shows how the median gives us the exact middle of our dataset when we have an odd number of values, even when some numbers appear more than once."

For a complete collection of math examples related to Measures of Central Tendency click on this link: Math Examples: Measures of Central Tendency: Median Collection.

Common Core Standards CCSS.MATH.CONTENT.6.SP.B.4, CCSS.MATH.CONTENT.6.SP.A.3, CCSS.MATH.CONTENT.HSS.ID.A.2, CCSS.MATH.CONTENT.HSS.ID.A.3
Grade Range 6 - 12
Curriculum Nodes Algebra
    • Probability and Data Analysis
        • Data Analysis
Copyright Year 2014
Keywords data analysis, tutorials, measures of central tendency, median, average